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Using the Cossera model, in which the internal energy depends linearly on the microrotation gradients 

and non-linearly on the microrotations themselves, the propagation of small isothermal perturbations 

is investigated. It is shown that for a steady flow of the medium, an unsteady microrotational regime is 

possible. This effect is interpreted as acoustic emission by the medium. 

1. Lm t BE the time and xi Cartesian coordinates in some frame of reference. Latin indices 
correspond to coordinates and take values from 1 to 3. 

The state of a viscous medium with a microstructure is described by the density field 
P =pO, x,), vel ocity field I+ = uj(t, xi), angles of microrotations about the coordinate axes 
gj = cp,(t, xi), and temperature T = T(t, xi).- These fields satisfy the dynamical equations [l] of 
continuity, momentum, angular momentum, and energy 

dP ~+py,i =O 

P J$ = oijj + fi 

d dqi 
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dt 
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2 dt dt dt at ’ pi 

Here oij is the stress tensor, a, is the angular momentum stress tensor, f; are the external 
forces, m, is the moment of external forces, A4, is the moment of internal forces, J is the 
moment of inertia density, which we shall take to be constant, K is the kinetic energy density, U 
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is the internal energy density, qi is the thermal flux, and E is the rate of heat production per 
unit volume. We shall also use the Clausius-Duhem inequality 

p$-T%+(q#P) 2 0 
.i (1.5) 

We shall assume that the internal energy U depends on the parameters p, T, cpp, yrij = cpi,j 
where 

QP = ‘Pi -1eij*uk,j9 
d 

2 
-ui = Vi 
dt 

Then the second law of thermodynamics for particles of the medium has the form 

T& = d(p-‘u) + pdp-' + U+dQf + $p-ldyii (1.6) 

where p is the pressure, and Qi and oij are thermodynamic forces associated with the 
microstructure of the porous medium. 

We will define the elastic potential as follows: 

Then according to (1.6) we have 

(1.7) 

The state of the medium at Q: = 0 will be energetically stable if the potential W has a local 
minimum at ‘pij = 0, vii = 0 If we confine ourselves to a quadratic approximation, then 

where 

q>o, h, >o, yl; =y (ij) -&j&k. w; = W[ij] 

From (l.l)-(1.4) and (1.6) it is easy to compute the expression specifying the entropy change 

The viscous stress tensor zij = oij +p6, consists of symmetric z; = rcijj and antisymmetric 
z; = ~1~1 parts. 

We shall consider processes for which T = const and E = 0. 
From (1.5) and (1.9) we have the inequality 
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(1.10) 

Inequality (1.10) is satisfied in the quadratic approximation if the following constitutive 
relations hold 

(1.11) 

.(1.12) 

(1.13) 

(1.14) 

Here TI is the bulk viscosity, p is the shear viscosity, and Aa, and a and p are non-negative 
dissipative coefficients. We will further restrict ourselves to the case when IJ, pL, p > 0, A, = 0, 
a = 0. 

2. We will investigate the propagation of small isothermal perturbations on an inhomo- 
geneous background p = p,,, ‘ui = 0, cpi = 0, putting c* =(&lap),, r = p-t&. Then it follows from 
Eqs (l.l)-(1.3), (1.8), (1.9), (l.ll)-(1.14) that 

al 
z + POSi = O 

PO a. aU’+C2~~-(ll+~~-P)Uk,,-(~+P)ui,a+2~E~k$Qj,k=0 

a2Q. 
J~+2 aQi 

at 8[ 
EiiCUj,k+2- - 

at 1 
- 1, +;A2 -$& 1 ‘Pk,ti -+[h +&]Qi,u +<Q; =o 

G-9) 

It is convenient to solve Eqs (2.1) by the Fourier transformation method, with each 
unknown function f = f(t, xi) replaced by its transform 

fF(%nj)=le -i(oc’a’x”f (t,Xj)dtdr,dr,dr, 

System (1.5) turns into a system of linear equations whose determinant is given by 

det A = P,P2P32 

fj = ipoa2 - ipoc2nknk + anknk 
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P2 = -Aa2 +4@io+(h, +$k2)rikn, +q 

P3 = (&co + (p + f3)nknk) ( -Jo2 + 4pio + 3 (X2 + k3)nknL + 5) - 

-4f3(f3 + 5(4io)-‘)iwa,n, 

Thus the dispersion surface decomposes into three surfaces Pa = 0 (a = 1, 2,3). 
The dispersion relation & =0 corresponds to longitudinal motion of the medium, which 

decouples from rotational degrees of freedom. 
The dispersion relation Pz = 0 corresponds to longitudinal-rotational waves, which decouple 

from translational degrees of freedom. At high frequencies these waves have the asymptotic 
form 

n = -wd + yi + O(w”) P.2) 

where n is the wave number, v is the wave velocity, and y is the decrement. 
The dispersion relation P3 = 0 corresponds to transverse coupled translational-rotational 

motions. For the wave number n there is a biquadratic equation, one of whose solutions also 
has the asymptotic form (2.2) at high frequencies, with 

2)= 2--K(h2 +1,)G% y = 4zJ(h, +h,)-‘Pll(p+P)-’ 

3. Actual rocks generate acoustic signals over a broad frequency band when they are under 
stress. The original acoustic impulse, propagating from the generating region towards the 
receiver, evolves and acquires a different amplitude-frequency behaviour. It has traditionally 
been assumed that the mechanism by which the original acoustic impulse is generated is 
associated either with defects in microcrystals constituting the material or with dislocations, 
twinning, etc., or with crack formation [Z]. However, within the framework of the non-linear 
theory of elasticity for media with microstructures [3] a slow translational motion can also lead 
to ultrasound generation as a result of resonance between the low- and high-frequency 
branches of the dispersion surface. In this section it is shown that the original acoustic impulse 
can also appear during the creep of materials with microstructure. 

We shall interpret the presence of an unsteady (high-frequency~ microrotational regime 
during slow translational motion of the medium as the generation of the original acoustic 
impulse. In accordance with the ideas of [3], in order to describe such an effect it is natural to 
consider the non-linear theory of a medium with microstructure, We will take account of the 
non-linearity by specifying a more-complex expression for W than (1 _S), replacing ~~~~~/2 
with a smooth function w depending on the microrotations 9:. 

We will investigate a class of transverse translational-rotational motions. We put 

Then from Eqs (1.2), (1.3), (1.8), (1.13)-(1.16) and the new expression for W we obtain the 
equation 

(3.1) 
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We shall treat the right-hand side of Eq. (3.1) as a source, or as an external field. Suppose 
this source is stationary, i.e. F = F(x). Then Eq. (3.1) has a unique stationary solution 
cp, = cp,,(x) satisfying zero boundary conditions as x + f 04 We shall consider the local stability 
of this solution. 

Let G = cp - cpo be a small perturbation of the stationary solution. Equation (3.1) reduces to a 
dynamic equation for G (where H is the Schrodinger operator) 

JQ.,, + 4pQ, + HQ, = 0 (3.2) 

Since any function a=@(& X) can be decomposed into eigenfunctions of the Schrodinger 
operator [4] with certain coefficients C = C(f, h) (where h is the eigenvalue), it is sufficient to 
consider the equation 

following from Eq. (3.2). This equation has the solution 

C= C,eial’ +C2ei(u2’, olmz= J-‘(2pi+(JA -4p2)x) 

We note that for h CO an exponentially growing mode exists, and the solution cpo(x) is 
unstable. If, however, the spectrum of the SchrUdinger operator H is non-negative, the 
solution ‘p. is stable. 

We consider in more detail the conditions under which the Schrodinger operator H can have 
negative spectral points. Since the operator (-Aa’/&“) is positive-definite, negative spectral 
points are only possible when the potential V takes negative values. 

Thus if the function w is convex, the stationary solution cpo(x) is stable. We will now show 
that if the potential w has non-convex parts, flows of the medium exist in which the stationary 
solution q,,(x) is unstable. In this case, for initial conditions of general form the micro- 
rotational regime will be unsteady. 

Thus, suppose K = (a*w/&#) I,=,cO, and suppose that L and E are positive quantities with 
dimensions of length such that E/L cc 1. We define 

(40(x)=0 for xE(-m,O]u[L,+=) 

‘PO (xl = 9. for xE[e,L-El. 

and let (p. be a smooth monotonic function in the intervals [0, E] and [L-E, L]. 
We determine the flow of the medium from the equation 

-ha%, I ax2 + (azw I a+,=,,,,, = 2p, 

In this case, the solution of the spectral problem for the Schrodinger operator, apart from 
terms of order E/L, is close to the solution of the standard quantum mechanical problem for a 
rectangular potential well [S] 

V(X)= v, = (a2iviax2)lpr0 for x EC---oo.OluL+=) 

and V(x)=K for x E [0, L]. In the well problem the Schrodinger operator has a negative 
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spectrum, the lowest point of which can be as close to K as desired for sufficiently large L. 
Thus it has been shown that for a non-convex function w there are steady flows of the 

medium for which there is an unsteady process at the level of medium particle microrotations. 
This phenomenon has a natural interpretation as the generation of the initial acoustic impulse. 

We note that a non-stationary solution cp = cp(t, x) has a range of completely determined 
properties (such as the spectrum) which do not depend on the initial conditions, but on the 
parameters J, p and the form of the function w. This is due to the fact that for equations of the 
form (3.1) the existence of a compact attractor with finite Hausdorff dimension [6,7] has been 
proved. Hence the dynamics of microrotations will be completely defined by the structure of 
this attractor. Thus the acoustic emission has the form of deterministic noise. 
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